Link between Membrane Composition and Permeability to Drugs. Prediction of membrane permeability to small molecules represents an important aspect of drug discovery. First-principles calculations of this quantity require an accurate description of both the thermodynamics and kinetics that underlie translocation of the permeant across the lipid bilayer. In this contribution, the membrane permeability to three drugs, or drug-like molecules, namely, 9-anthroic acid (ANA), 2′,3′-dideoxyadenosine (DDA), and hydrocortisone (HYL), are estimated in a pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and in a POPC:cholesterol (2:1) mixture. On the basis of independent 2−5-μs free-energy calculations combined with a time-fractional Smoluchowski determination of the diffusivity, the estimated membrane permeabilities to these chemically diverse permeants fall within an order of magnitude from the experimental values obtained in egg-lecithin bilayers, with the exception of HYL in pure POPC. This exception is particularly interesting because the calculated permeability of the sterol-rich bilayer to HYL, in close agreement with the experimental value, is about 600 times lower than that of the pure POPC bilayer to HYL. In contrast, the permeabilities to ANA and DDA differ by less than a factor of 10 between the pure POPC and POPC:cholesterol bilayers. The unusual behavior of HYL, a large, amphiphilic compound, may be linked with the longer range perturbation of the lipid bilayer it induces, compared to ANA and DDA, suggestive of a possibly different translocation mechanism. We find that the tendency of lower permeabilities of the POPC:cholesterol bilayer relative to those of the pure POPC one is a consequence of increased free-energy barriers. Beyond reporting accurate estimates of the membrane permeability, the present contribution also demonstrates that rigorous free-energy calculations and a fractional-diffusion model are key in revealing the molecular phenomena linking the composition of a membrane to its permeability to drugs. Journal of Chemical Theory and Computation, 2018.

Recent publications

Water-Controlled Switching in Rotaxanes
Shuangli Du; Haohao Fu; Xueguang Shao; Christophe Chipot; Wensheng Cai;
The Journal of Physical Chemistry C (2018) 122 (16): 9229-9234

Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA
Hong Zhang; Hugo Gattuso; Elise Dumont; Wensheng Cai; Antonio Monari; Christophe Chipot; Francois Dehez;
Molecules (2018) 23 (2): 129-
BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations
Haohao Fu; James C. Gumbart; Haochuan Chen; Xueguang Shao; Wensheng Cai; Christophe Chipot;
Journal of Chemical Information and Modeling (2018) 58 (3): 556-560


- Renewal of the Laboratoire International Associé CNRS-University of Illinois at Urbana-Champaign on November 2016
- An update of ParseFEP is available in the latest version of VMD.
- 新的分子动力学讲义 (Dissemination).


Laboratoire International Associé
Unité mixte de recherche n°7565
Université de Lorraine, B.P. 70239
54506 Vandoeuvre-lès-Nancy Cedex, France
Phone: +33.(0)
Fax: +33.(0)
How to reach us